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ANGIOSPERMS are plants of considerable structural 
complexity including a number of characters, i.e., 
structural features essential for their description as a 
category of plant kingdom. There are characters they 
share as well as those they do not share (or if share 
then reluctantly) with other plant categories. Among 
the non-shared characters, some are present in all or 

majority of the hitherto studied angiosperms, the 
It is 

ideal, or archetypal, rather than typical, for actually 
there could be none of the kind growing around. 
Even the expectations of finding archetypal an­
giosperm as a fossil are rapidly expiring with the 
progress of palaeobotanical research. 

It is, thus, clear that the notion of angiosperm 
characters is meaningful only in comparison with 
another plant category showing a number of similar 
character states alongside some dissimilar char­

the virtue which this latter category 
Our current no·-
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angiosperms were taxonomically separated from 
gymnosperms. The mid-XIX century system-makers 
have treated the both as divisions of Anthophyta, 
flowering plants, thus using the naked vs protected 
ovules, and not the flower, as a principal distinction. 

As far as the extant plants are concerned (and 
there was nothing else to be concerned at the time) 
the distinction is clear cut. With addition of fossil 
plants, such as cupuliferous pteridosperms or 
caytonias, it is not. On the other hand, the much 
debated problem whether the conifer seed-scale 
complexes are flowers (of the same kind as the seed­
scale complexes of grasses) or not seemed to have 
been resolved by Florins (1938-1945) work on fossil 
conifers showing that their seed-scales are 
ovuliferous shoots rather than ovuliferous leaves as 

angiosperm carpels were then supposed to be. In 
effect flowers were rendered typical of angiosperms 
making synonymous to flowering plants. 
Flower itself was, with admirable circularity, defined 
as a reproductive organ of flowering plants, although 

bennettitalean flowers still posed some problems. 
when fossil data infringe a taxonomic 

distinction the latter can nevertheless be sustained 
either by ignoring the fossil data or by claiming the 
fossil structures non-homologous - and therefore ir­
relevant - to morphologically similar extant struc­
tures, and both the methods have been vigorously 

by plant morphologists. Even aberrant 
living plants, such as gnetaleans, were treated in the 
same way. The morphological proximity of 

giosperms, thus providing an angiosperm character 
pool (Krassilov, 1975). Whether they all or any of 
them actually gave rise to plants currently classified 
as angiosperms is another matter. More angiosperm 
characters are related to evolutionary trends in proan­
giosperms the more likely the angiosperm ancestry 
of the latter would seem. Here I briefly summarize the 
character origin models described in more details 
elsewhere (Krassilov, 1977, 1989, 1991): 
1. Proangiosperms including dirhopalostachians, 

leptostrobaleans (czekanowskialeans), cayto­
nias, and extinct gnetaleans were represented by 
leptocaul trees with deciduous leafy spur shoots, 
shrubs and waterside - aquatic or semiaquatic -
herbs (Baisia: Krassilov & Bugdaeva, 1981). All 
these life forms might occur in early angiosperms. 
Incidentally, Caspiocarpus, an early Albian an­
giosperm from Kazakhstan with pistillate 
panicles attached to leafy shoots (Vachrameev & 
Krassilov, 1979; Krassilov, 1991) was recons­
tructed as a herbaceous plant, and a quite similar 
form was then described from Koonwarra bed in 
Australia (Drinnan & Chambers, 1986). 

2. The monocot-type parallel-veined leaves might 
have phyllode origin (Arber, 1918) as evidenced 
by histological studies (Kaplan, 1970) and similar 
tendency in czekanowskians, gnetaleans ( 
witschia) and bennettites. Some of the 
phyllodial bracts still bearing miniature leaf 
blades (Harris, 1969; Krassilov, 1982a). 
Cretaceous angiosperm leaves 
ly branching segments (Debeya, 
Proteophyllum, etc.), as well as 
Scoresbya-Sagenopteris leaf show inter-
mediate shoot/leaf (caulome/ phyllome) 
ters (Krassilov, 1989). The typical dicot-type 
blade origin is modelled on the basis of segment 
fusion in compound leaves of peltasperms in­
cluding such supposedly proangiospermous 
plants as Furcula. Segment fusion by marginal 
meristems initially has not affected the originally 
open venation pattern. However, the 
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l. Pistillate head from the Palaeocene: of Kamchatka, x 20 (Maslova 4. 
& Krassilov. in press). 

Lemnoid fruit from the Maastrichtian of Mongolia. SEM, x 70 
(Krassilov & Makulbekov, in press). 

2. 

3. 
Individual flower of the same, SEM, x 30. 
Flower showing distinct staminodes (s) and interfloral phyllomes 
(i), SEM, x 30. 

5. 

6. 

Ovule of the same showing funicle and embryo cap, SEM, x 10. 

Funicle of the same, SEM, 660. 
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A 

E 

Text-figure I-Reconstruction of proangiospenn cupules: A- Lep­
tostrobus, B-Dtnopbyton, C-Eoantha, D-Batsia,. E-Caytonta and 
putative prototype with distinct subtending bract (after Krassilov, 
1969). 

meristem occurring within the aggregate leaf 
blade might give rise to plate meristem which 
mediated looping of the former midveins and, 
within the primary loops, oflateral veins and their 
branches, thus forming areolate venation of 
several orders (Krassilov, 1991, 1995; Plate 1). 

3. The long debated homology of vessels in 
gnetaleans and angiosperms has been convinc­
ingly demons-trated by Muhammed and Sattler 
(1982). In addition, tracheid-like vessels with 
simple porous and scalariform perforation plates 
were found in bennettitalean leaf veins (Kras­
silov, 1982a) evidencing the occurrence of this 
character in more than one proangiosperm 
groups. 

4. Anthocorm model of angiosperm flower 
(Meeuse, 1975) is supported by the occurrence of 
anthocorms--essentially short shoots with apical 
dusters of pistillate or staminate organs or both 
mixed with interfloral phyllomes ( sterile leaves 
or cataphylls">--:-in several proangiosperm 
groups, such as Irania, bennettites, czekano­
wskias and possibly also caytonialeans and dir-

hopalostachians. Some early angiospem flowers 
still retained a little modified anthocorm mor­
phology (Dilcher, 1979). Moreover, distinct inter­
floral phyllomes were recently found in florets of 
Palaeocene hamamelid heads (Maslova & Kras­
silov, in press; Pl. 2, figs 1-3) indicating their 
primary rather than derived character in an­
giosperms. 

5. Stamen origin is modelled on Meeusella, a 
staminate shoot with lateral branches bearing a 
pair of stalked sporangial heads (Krassilov & 
Bugdaeva, 1988; Pl. 1, fig. 3). Some lateral 
branches are sterile. The sporangial stalks­
second order branches, are of variable length 
along the axis. In the case of their extreme reduc­
tion the paired sporangial heads are sessile, with 
the primary branch apex protruding between 
them as a connective of bithecate anther. The 
latter thus might derive from a pair of second 
order sporangiate branches while reduction of 
the main axis would give a fascicle of stamens. 
This model implies primary nature of fasciculate 
stamens (cf. Pauze & Sattler, 1978) as well as 
paired stamens, as in Saururaceae (Tucker, 1985) 
and possibly also stamens with sterile ap­
pendages (derived from sterile lateral branches 
of Meeusella prototype), as in Monimiaceae and 
Lauraceae. 

6. The tricolpate and triporate pollen grains appear­
ing rather early in the fossil record have no ob­
vious precursors among proangiosperms. How­
ever, the monosulcate fossil pollen grains of 
Eucommiiditestype have a zonal equatorial fur­
row (Hughes, 1994) or two additional furrows 
parallel to the sulcus. These furrows are scars of 
reduced sacci of monosaccate or bisaccate pollen 
grains occurring in . caytonialeans and other 
proangiosperms. A polarity change along is re­
quired to transform Eucommiidites into tricolpate 
pollen grain of primitive angiosperms. Porate or 
pseudoporate appertures first appeared in Clas­
sopollis, fossil pollen traditionally assigned to 
conifers but referred to extinct gnetaleans by 
Krassilov Cl982b). Recently clumps of Classopol­
lis have been found in the guts of Jurassic insects 
(Pl. 1, figs 4-6) evidencing pollinivory and possib­
ly entomophily. In these pollen grains the pore 
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area is surrounded by subequatorial rimula. They 
resemble tetrads of early angiosperms covered 
with common sexine layer and showing annubte 
pores (Walker et al., 1983). Such tetrads might 
evolve in triporate pollen grains (one unit lost 
with the change of symmetry) which are then 
initially tetrasporic (Krassilov, 1989, 1991). 

7. Reinterpretation of typical carpels as peltate or 
ascidiform strnctures (Rohweder, 1967; Endress, 
1983; Erbar, 1986) make it easier to reconcile their 
morphology with their origin from proan­
giosperm cupules (Long, 1966; Krassilov, 1977; 
Heel, 1981). Among the Mesozoic cupules (Text­
figure 1), the many-seeded bivalved Leptostrobus 
with submarginal anatropous ovules was formed 
by fusion of two open peltasperm-like cupules, 
the fusion meristem giving rise to stigmatic papil­
late crests (Krassilov, 1969, etc.). A similar origin 
was suggested for the paired Dirhopalostachys 
cupules (Krassilov, 1975). Caytonia had as­
cidiform cupules a slit-like exostome (mouth) of 
which was bordered by a lip-like appendage - a 
residual subtending bract. According to this inter­
pretation (Krassilov, 1989) the ovules are 
anatropous while the mouth occurs in the fusion 
zone of cupule and its subtending bract. The 
cupule pairing and fusion, or syncupuly, oc­
curred in different proangiosperms on their way 
to aquiring angiospermous carpels. 
Another group of proangiosperms had or­
thotropous ovules borne in the four-lobed 
cupules with adnate bracts and tipped with tufts 
of hairs, as in Dinophyton (Krassilov &Ash, 1988) 
or with protruding axis crowned with bracts rep­
resenting a reduced distal floral node, as in Eoan­
tha (Krassilov, 1986) or utriculate with 
hairycorona of supposedly similar origin, as in 
Baisia (Krassilov & Bugdaeva, 1982). Among 
them, Dinophyton and Eoantha show definite 
gnetalean features (including ribbed pollen 
grains in the latter) on the virtue of which they 
are protognetalean as weH as proangiospermous. 
These and perhaps others still undiscovered or 
misinterpreted cupules might give rise to dif­
ferent types of carpels while their bracteate or 
axial appendages might evolve in various stig­
matic structures. Presently we have two rather 

loosely defined proangiospermous groups, Lep­
tostrobus-Caytonia and Eoantha-Baisia the 
cupules of which are comparable with pistils of 
ranalean dicots and monocots respectively. The 
recenrly found Late Cretaceous utriculate fruits 
with funnel-shaped stigmas (Pl. 1, fig. 4) contain 
a solitary orthotropous ovule the funicle of which 
appears as a direct continuation of the pedicel 
(Krassilov & Makulbekov, in press). The ovules 
show embryo cap and caruncle. These fruits are 
assigned to aquatic angiosperms related to Lem­
naceae, a fairly advanced monocot family. How­
ever, they seem to retain a primitive cupule-like 
fruit structure and the ovule type common to a 
number of monocot families as well as for their 
protognetalean precursors. 

8. Double fertilization in Ephedra involves the egg 
and ventral canal cell (Herzfeld, 1922; Khan, 
1940). According to the gametophyte cell homol­
ogy model proposed by Krassilov (1989) based 
on Cocucci (1973) the angiosperm embryo sacis 
formed of two or several archegonia, the eggs of 
which function as polar nuclei while the former 
ventral canal cell maintains its position close to 
the former neck cells (synergids) in the way of 
the entering sperm and is sexualized as a secon­
dary egg (Text-figure 2). 
The above models postulate chimeric origin of 

typical angiosperm characters acquired by aggrega­
tion and fusion of progenitorial structures. The latter 
morphological processes might reflect developmen­
tal acceleration and the ensuing condensation of 
developmental events. In my previous publications 
(Krassilov, 1977, etc.) the process of angiospermiza­
tion was related to enironmental crises. The earliest 
macrofossil angiosperm records occur in the Early 
Cretaceous ecotone between the summer-wet 
deciduous and summer-dry evergreen zones. 
Ecotonal environments are most sensitive to climatic 
and related vegetational changes. In addition, such 
important early angiosperm localities as, Baisa in the 
Lake Baikal region, Koonwarra in Australia and 
Makhtesh Ramon in Israel (Krassilov & Dobruskina, 
in press) are situated in the then active rift zones. 
Environmental instability generally promotes ac­
celerated development and phenotypic plasticity. 
Therefore, parallel acceleration trends might involve 
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different proangiosperm lineages. An advantage of 
early angiosperms in such environments might be 
due to extended evolutionary potentials of their 
chimeric organs capable of acquiring new functions. 
New findings of proangiospermous pollen in the guts 
of Mesozoic insects support the idea of plant-insect 
interaction as a factor in the evolution of pollen 
seledion on the basis of the password - response 
compatibility mechanism involving both stigmatic 
and exinal structures. Another factor leading proan­
giosperm cupules to typical angiospermy was endo­
and exozpochory the role of which considerably 
increased with the rise of mammals. With some luck 
this scheme will be further tested by the fossil record. 
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